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G E N E R A L I Z A T I O N S  OF T H E  C L A U S I U S - C L A P E Y R O N  

E Q U A T I O N  IN A C O U P L E D  T H E R M O M E C H A N I C A L  M O D E L  

A. G. Knyazeva  UDC 536.46 

Several modifications of the Clausius-Clapeyron equation,for deformable media, including solid- 
phase transformations which depend on the change of additional parameters, are proposed. 
A model of the medium with tensor concentrations of the components -for which the unique 
Clausius-Clapeyron equation is also valid is proposed. The tensor analog of the transition heat 
is introduced, and an expression -for the total transition heat related to the energies of chemical 
bonds in the crystal lattice is obtained. At  least -for slow processes, the -fundamental possibility 
o.f determining the self transition heat in the experiment is shown analytically. 

The connectedness of thermophysical and mechanical processes and the phase transformation proper 
is generally not taken into account in constructing mathematical models of phase transitions [1-3]. However, 
in some situations, when the role of various energy effects or the dependence of the temperature of the phase 
transition on the parameters of the medium should be evaluated, the connectedness of various processes can 
be of primary importance. In the present study, the conditions of phase equilibrium and the possibility of 
determining the parameters that enter the model of [4] and characterize the medium and the first-order phase 
transition are analyzed. In the particular situations considered, the external load is absent, and the stress 
and strains are a consequence of the phase transformation. 

1. G E N E R A L  R E L A T I O N S  

We write the general relations used. 
In terms of the model of [4], the basic equation of thermodynamics (Gibbs equation) for a local volume 

has the form 
n+2 

du = T ds + p -  1 aij dgij + ~ gk d_Yk + XP- 1 d~h (1.1) 
k = l  

where u is the specific internal energy, s is the entropy, T is the temperature, p is the density of the medium, 
a~j and Eij are the components of the stress and strain tensors, gk [J/kg] are the chemical potentials of 
the components (or their specific partial Gibbs energies) for k = 1, 2 , . . . ,  n, vacancies for k = n + 1, and 
dislocations for k = n+2, Ark are the corresponding mass concentrations, X [J/m3] is the energy potential of the 
macrodamages (or the  structural potential), ~ = vp/v, vp [m3/g] is the specific volume of the macrodamages 
(cracks and pores), and v = p-1 is the specific volume of the medium. For small strains, the constant-density 
approximation p ~ const is valid and it is convenient to determine the thermodynamic potentials for a unit 
volume. In the general case, the potentials for a unit mass should be introduced, because it is quite possible 
that the potentials cannot exist for a unit volume [5]. In variables T and Eij, Eq. (1.1) takes the form 
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n+2 

d f  = - s  d T  + p - l a i j  deij + E gk d N k  + Xp -1 dr/, (1.2) 
k=l  

because f = u - T s .  Similarly, in variables T and aij we have 

n+2 

dg = - s  d T  - p - l e  0 daij + E gk dNk  + Xp -1 dr h (1.3) 
k=l  

where g = u - T s  - p - I c r i s q  is the Gibbs specific potential. 
It is natural  that  if at least one potential is known, for example, f ,  the other potentials can be found 

via this known potential. In particular, for a thermoelastic isotropic body, the local function of free energy 
of a unit mass can be given in the form [6] 

/ A z~) p- ' ,  (1.4) f = fo - \ 3 K a T ( T  - T0)fl + # h  + 

where f0 is the fraction of the free energy that  does not depend on strains, f0 = fo( t ,  Nk ,  rl), I1 = ekk, 

I2 = eijei j  (summation is performed over the repeated indices), K = ,k + (2/3)# is the isothermal modulus of 
overall compression, and A and # are the Lam~ coefficients. If there are structural and concentration stresses 
and strains in the system, the function of free energy 

[ /~ r2"~ --I / = Io - i KwI1 +~ ,G + 7 ~ 1 ) p  (1.5) 

where 
n+2 

w = 3 [ a T ( T  - To) + ~ a k ( N k  -- Nko) + as(~7 - rl0)], (1.6) 
k=l 

aT is the coefficient of linear thermal  expansion, ak are the coefficients of concentration expansion relative 
to each component (similar concepts were introduced in [4] for vacancies and dislocations), and as is the 
coefficient of structural expansion, is the generalization of (1.4). 

Using (1.2) and (1.4), we find 

(--0~) = 2/zs,j + 6ij[Aekk -- Kw],  (1.7) r = P T, Nk 

where 6ij is the Kronecker symbol. 
Using known relations between the Lam~ coefficients and the elasticity modulus E, the Poisson ratio 

u, and the modulus K,  we rewrite relations (1.7) in the form 

1 - 1 
E~ = ~ [(1 + ~)o~ . o k k ~ ]  - 5 w~iJ" 

In this case, the specific Gibbs potential  has the form 

w E w 2 
g = f0 + ~ 1  ira2 k _ (1 + r')aijaij] - -~p Crkk 3(1 -- 2v) 2p . (1.8) 

The equalities (1.4) and (1.8) allow one to write two equivalent relations for the entropy obtained as 
the partial derivatives of the potentials f and g with respect to the temperature. In the particular case 
where the mechanical properties do not depend explicitly on the temperature, we have the following simple 
relations: 

/ O f o ~  
s = - [ - -~ t~ ,~=o + Z K p - ~ T I ~  = ~ ( ~ ,  T, Nk, ~), 

[ O fo'~ E a T  
S -~- -- ~ - .~] r  --~ p-lo~TCrrnm Jr- ~ p - l w  -~- 8(O'ij , T ,  Wk, r/). 

Similarly, we find two equivalent definitions of the chemical potentials of the components. On a per- 
mole basis, we have 
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c~kmkE w 
gk = gko -- 3Kp-lc~krnkI1 = gk(T, ~ij), gk = gko -- p-ic~krnkamm = gk(T, aij) .  

1--29 p 

In the simplest case, one can assume that gao = gk,st + R T l n  (Nk),  where R is the universal gas constant, 
gk,st is the chemical potential of the component k for the standard state, and mk is its molar mass. Clearly, 
we have E/(1 - 29) = 3K. 

The condition of phase equilibrium of phases Nos. 1 and 2 of the same substance follows immediately 
from the Gibbs equation, which is similar to (1.1) and is written for each phase separately duk = Tk dsk + 

-1 (k) Pk ~rij dekj § XkP-ki d~?k +gk  dNk,  where k = 1 and 2, and the condition of general thermodynamic equilibrium 
of an isolated system which does not do work [7] ds = d(s i  +s2) = 0; for a deformable medium, these conditions 

lead to the equalities gl = g2, T1 = T2, X l P l  1 -~ X2P21, and 

(1) -I _(1) (2) -i ds~2) 
f f i j  Pl  d ~ i j  = ~ ~'2 __ (1.9) 

where Pl and P2 are the partial densities of the phases and EI~ ) and _(2) ~ij are the components of the tensor 
of the strain that arises as a result of phase transitions. Here the necessary requirement is the additivity of 
the quantity Xp -1. For a system with an additional parameter 7, we arrive at the conventional condition of 
phase equilibrium 

gl (T ,  p, ~?) = g2(T, p, ~), (1.10) 

where T and p are the temperature and the pressure equal in both phases only in the case of overall uni- 
form compression. In the general case, it follows from the equality (1.9) that not all changes in the strain 
components are independent. Some independent components of the tensors of the strain that results from 
phase transitions are determined by the type of phase transition and the character and structure of the in- 
terface, which was thoroughly considered in [2]. If necessary, the specific interface can serve as an additional 
parameter; then Xp - i  is the surface energy. 

Generally speaking, for a deformable system that does no do any work (daij  = d T  = 0) and for the 
condition dr /= 0, tim condition of thermodynamic equilibrium follows from the Gibbs equation (1.3) and has 
the form 

gi (T, aij ,  ~?) = g2(T, aij ,  ~?). (1.11) 

If dx -- 0 is valid for this system (the additional parameter 7/can vary), the condition of thermodynamic 
equilibrium is dgs = 0 or gi (T, aij ,  X) = g2 (T, aij,  X),  where gs = u - T s -  p - i a i j ~ i j -  p-ix~? is the "structural" 
Gibbs potential. 

2. V A R I O U S  F O R M S  O F  T H E  C L A U S I U S - C L A P E Y R O N  E Q U A T I O N  
F O R  A N  I S O T R O P I C  M E D I U M  

2.1. T h e  Simples t  Genera l iza t ion .  Let the phase transition in a solid be connected only with the 
change in the temperature and concentration (mass fractions) of the phases. The other parameters of the 
medium, such as the concentration of vacancies, the density of the dislocation distribution, and the volume 
of cracks, remain unchanged. Here the phase transition from phase No. 1 to phase No. 2 is accompanied by 
the appearance of temperature and concentration stresses and strains, the magnitude of which is determined 
by the coefficients aT,  a l ,  and a2 in terms of the function (1.6). Since the point is that we are dealing with 
the phases N1 and N2 of the same substance, we have rni -- m2 --- rn. 

By definition, during the phase transition of the first kind the first-order derivatives of the Gibbs 
energy of the phases g -- g i N i  + g2N2 with respect to the temperature and pressure, i.e., the entropy and the 
volume, undergo a jump. 

In the general case of transitions of the first kind, the relation between the temperature Tp h of the 
phase transition and the pressure p is established by the Clausius-Clapeyron equation 
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d T p h  - /kVph = AVphTph (2.1) 
dp ASph Qph ' 

where AVph and ASph are the differences between the partial molar volumes and molar entropies of the phases 
and Qph is the latent heat of phase transition. Equation (2.1) is easily derived from the phase-equilibrium 
condition (1.10) for v/-- 0 at the temperature and pressure of the phase transition by means of the expansion 
in a Tab;lor 'series of the chemical potentials of the phases in terms of small deviations of T and p from their 
equilibrium values. In the case of a deformable medium, to construct an equation similar to (2.1), we use the 
equilibrium condition (1.11), according to which the scalar chemical potentials in an isotropic medium are 
meant to depend on the components of the stress tensors only through their invariants. 

From (1.11) follow the expressions for the components of the tensor of the strain resulting from phase 
transitions: 

-- / 2 2 )  
i j  -'~ T 

and the partial molar entropy of the kth phase 

8k  (2.3) 
\ ] Crij 

where sk0 = --(Ogko/OT)crij = 0 (k = 1, 2). 
We assume tha t  the temperature deviated from the equilibrium value dT. Since the phases remained 

in equilibrium, the change in temperature changed the components of the stress tensor by da~j. For small 
deviations of the temperature and stresses from the equilibrium values, we have gk(T  + dT, aij + daij) 
gk(T, O'ij) + (Ogk/C%rij)TdCrij -'}- (Ogk/OT)ai3 dT. 

By virtue of the equality of the chemical potentials (1.11) and the expressions for the derivatives of 
the Gibbs energies of the phases (2.2) and (2.3), we find 

(sl - s2) dT  = 3m al  - a2 dp, T = Tph , P = Pph, (2.4) 
P 

where p ---- - (1/3)~rmm. 
The heat of phase transition from phase No. 2 to phase No. 1 is found from the equality Qph=Tph(Sl--S2). 

With account of (2.3), we have 

Qph = Qph0 -t- AQph, (2.5) 

where Qph0 = Tph(Sl0 - s20) is the latent heat of phase transition without allowing for the connectedness of 
thermal and mechanical processes or the self heat of phase transition and AQp h is its variation under the 
action of internal mechanical tbrces: 

AQph = (~1 -- a 2 ) 9 m a T K p - l T p h  �9 (2.6) 

In experimental studies, one determines the quantity Qph, which can consist of various components, including 
the work of internal forces, and can be different in different experimental conditions. 

As a result, for an isotropic medium with small elastic strains the modified Clausius-Clapeyron equation 
(2.1) takes the form 

dTph/dp = 3 ( m / p ) ( a l  - a2)(Tph/Qph ). (2.7) 

It is noteworthy that  if the chemical potential gk is a scalar, as are all thermodynamic functions, it 
depends on the invariants of the stress tensors, and we shall always come to the unique Clausius-Clapeyron 
equation, 

Equations (2.7) and (2.5) explain the appearance of the heat of phase transition Qph ~ 0 in the cases 
where the self heat of phase transition is zero: Qpho = O, which does not follow from the uncoupled models 
of mechanics. 

In accordance with (2.1), from (2.7) we have that  if the volume of the first phase is greater than that 
of the second phase, the pressure rise results in an increase in the temperature of the phase transition with 
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Qph > 0. For a2 < a l ,  the inverse effect occurs, i.e., with decrease in pressure, the transition temperature 
decreases. I t  follows from Eqs. (2.1) and (2.7) that ,  in the case of a phase transition of the first kind, the 
difference between the coefficients of concentration expansion of the phases is proportional to the difference 
between the molar volumes of the phases: 

a2 - -  al  = p A V p h / ( 3 m  ). ( 2 . 8 )  

However, if the phase transition in a solid occurs without changing the volume, i.e., AVph ~ 0 (e.g., in 
several phase transitions of the martensite type), which is equivalent to the condition a l  ~ (~2, one cannot 
obtain the dependence of the transition temperature on the stresses from Eq. (2.7); therefore, other models 
should be employed or the dependence of the properties on the temperature and concentration of the phases 
should be taken into account. 

One can speak of the unvaried volume only conventionally, and the small changes in the volume (of 
the order of 1-2%) should be taken into account in the construction of the model. We assume that in both 
phases, the  temperature varies by dT  and that  the stress increments in these phases are different. In this 
case, simple calculations with allowance for (1.11), (2.3), and (2.4) result in the equality 

(81 - -  82)dT = 3 m p - l ( a l  dpl - a2 dp2), (2.9) 

where Pl = - ( 1 / 3 ) a ~  and P2 = -(1/3)a~)m are the pressure variations in the phases. 
If  such a phase transition occurs at constant temperature (dT = 0), from (2.9) we find 

oq/a2 = (Op2/OPl ) T  , (2.10) 

i.e., in these conditions the ratio between the pressure variations in the phases is inversely proportional to 
the ratio between the coefficients of concentration expansion. This equation is an analog of the Poynting 
equation [7]. 

We note that Eqs. (2.7), (2.8), and (2.10) can be used to determine experimentally the coefficients of 
concentration expansion of the phases if the phase transit ion occurs under different conditions. 

2 .2.  Effec t  of  A d d i t i o n a l  P a r a m e t e r s  o n  t h e  P h a s e  T r a n s i t i o n  o f  t h e  F i r s t  K ind .  Let now 
the transi t ion of phase No. 2 to phase No. 1 be accompanied by damages of a certain type. In this case, 
tile function (1.6), on which the thermodynamic potentials f and g and the chemical potentials of the phases 
depend, also includes the parameter as. 

If the condition dr/ = 0 is not satisfied, wi th  allowance for the equalities N1 + N2 = const the 
condition of thermodynamic equilibrium for the two-phase system considered has the form gt (T, aij, 77) = 
g2(T, o'ij,~) + xp-l(O~?/Oy), where y = N21(Nlo + N20). If 7/does not depend explicitly on y or the quantity 
X is small, we again arrive at the equation of phase equilibrium in the form (1.11). Proceeding similarly as 
in Sec. 2.1, we present the chemical potentials of the phases as series in terms of small deviations from the 
initial s tate.  

The  partial derivative of the chemical potential  of the kth phase with respect to the additional pa- 
rameter is determined from the relation Xk = (OgkloqrI)cqj,T ----- (OgkolOrI)aij=O -- 9 r n p - l a k K a s  �9 In the 
simplest case of a damage-free medium in a undeformed state, we have Ogko/O~7 = 0. Various variants of the 
Clausius-Clapeyron equation for a deformable medium follow from the relation 

- ( s l  - s2) d T  - m p - l ( a l  da} 1) - a2 da}2))~ij - 9 m p - l K a s ( a l  dr/1 - a2 dr]2) = 0. (2.11) 

I t  follows from (2.11) that  if the phase transit ion occurs at the same pressure in the phases and at 
constant temperature dT  = 0, then 

o r  
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(al  - a2) dp = 3 K a s ( a l  d7/1 - a2 dr/2) (2.12) 

(2.13) 



Equation (2.13) establishes a different dependence between the pressure variation in the phase transi- 
tion at constant tempera ture  and the change in the additional parameter  77 in different phases. In this case, 
if the pressure in the phases is also constant  (dp = 0), from (2.12) follows one more analog of the Poynting 
equation 

- - (  ) - v l / v 2 ,  (2.14) a l / a2  0712/0711 T,p 

where, as before, vk -- 3makp  -1 (k = 1 and 2) is the partial molar volume of the kth phase. According to 
(2.14), the variation in 7] in one of the phases relative to the other is inversely proportional to the relation of 
the partial molar volumes of these phases for a constant temperature  and pressure. 

Similarly to (2.13), from (2.14) we find 

or a simple relation (Op/OT])T = 3Kas  for dpl = dp2 = dp; as a result, we have the principal possibility 
of determining experimentally the coefficient of structural expansion as relative to the angle of slope of the 
curve p(77) in the origin of coordinates. Apparently, the change in the volume of damages (for example, 
per unit surface) and the density of the dislocation distribution are not the most complex parameters  for 
measurement. The kinetic features of the phase transitions depend greatly on these quantities, in particular, 
in tin [8] and ammonium perchlorate [9]. 

If the phase transit ion occurs at constant pressure, the equation tha t  relates the variation in 7] in 
different phases to the temperature  has the form 

el 

In the particular case d711 = d712 = dT], from the last equality we obtain 

(dTph '~ 9 (a l  - a 2 ) m K a ,  _ 9(al  - a 2 ) m K a s  
- - ~  Jp = p(sl  - s2) = PQph Tph. 

In other words, the tempera ture  of the phase transition can probably vary at constant pressure owing to the 
change in any additional parameter  tha t  describes this medium (for example, the low concentration of an 
impurity, the density of the dislocation distribution, the specific volume of damages, etc.); generally speaking, 
precisely this occurs in various experimental studies [8-10]. 

Assuming that  the variation in pressure and the relative volume of damages (or any additional param- 

eter 7]) occurs in the same manner in bo th  phases, i.e., dpl = dp2 = dp and d711 = d~2 = dT], from (2.11) we 
find 

019 = PQph Tph - ~ 
(2.15) 

where the magnitude of the second term in brackets is determined by the kinetics of the variation in the 
additional parameter with pressure and, possibly, by the transfer processes tha t  correspond to 7] [8, 10, 11]. 

2.3. T h e  P o s s i b i l i t y  o f  D e t e r m i n i n g  t h e  H e a t  o f  P h a s e  T r a n s i t i o n .  We consider a slow phase 
transition that begins from the surface and propagates along a thick plate with a velocity much smaller 
than the sound velocity in a solid. The  plate is assumed to be not fixed and free from external  forces. 
The problem of mechanical equilibrium of a similar system is analyzed adequately in the literature. For a 
thick plate (the thickness is considerably greater than the dimensions of the phase-transition zone) we can set 
~mm = Kw/(A+2~) = ( 1 / 3 ) ( 1 + v ) w / ( 1 - v )  with good accuracy. Therefore,  in the case considered, the change 

in the entropy during the phase transition is s = -(Ofo/OT)s~j= 0 + 3Ko~TZmm = so + 3I(2aTW/(A + 2#). 
On a per-mole basis, with allowance for the condition N1 + N2 = const, we have 

( O~N2) (3KaT)2 ~  m 
(/kS)ph = rnp- i  T = A + 2it aT p " 

The last equality gives the expression for the transition heat in the form 
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(3KaT) 2 a l -  a2 m 
---- = . (2.16) Qph Tph(AS)ph -Tph A + 2/z r P 

Comparing (2.16) and (2.5), with allowance for (2.6) we find the latent heat of phase transition Qph0 = 
-6TphaTK(AV)ph(3A + 4#)/(A + 2#). 

Using (2.16), for a slow phase transition, from (2.7) we find dTph/d p = --3aT(A + 21z)/(3Ko~T) 2 < O, 
i.e., the ' transit ion temperature decreases with increase in pressure; this is in agreement with the classical 
concepts of phase transitions (see, e.g., [7, 10]), where the concepts of stress tensors and the coefficients of 
concentration expansion of the phases are omitted. 

Similarly, from (2.15) follows dTph/d p = -3aT((A + 2#)/(3KaT)2)(1 -- 3Kas O~l/Op). The sign of the 
last equality depends on how 7/varies with pressure variation. 

3. T E N S O R  C O N C E N T R A T I O N  A N D  C H E M I C A L  T E N S O R  P O T E N T I A L S  

For modeling phase transitions of the first kind, the variants based on the use of various models of 
deformable media are possible if these transitions are not accompanied by a change in volume or have some 
features of transitions of the second kind. In particular, the model of the medium used in [4, 8] admits a simple 
generalization to anisotropic media. In the present work, to describe phase transformations that  are connected 
to the transition of one crystalline modification to another, we introduce the tensors of phase concentrations 

_ (k) The (or components) .~'(k).lm and the corresponding tensors of the coefficients of concentration expansion ~lm- 
structure of these tensors and the number of their independent components are determined by the type of 
symmetry of the crystal lattices of real crystals and their modifications similarly to the thermal properties 
of crystals (e.g., ST) in the models of anisotropic media. In contrast to known models, we consider that 
the anisotropy of the properties of substances is immediately (explicitly) related to the type of the tensors 
Nk and the character and energy of the chemical bonds in the crystal in different directions; however, the 
macrochaxacteristics aT, A, #, etc., remain scalars that depend on the concentration tensors through their 
invariants. 

For the function w and all thermodynamic potentials to remain scalars, they should depend on either 
the invariants or invariant combinations of the new tensors. We assume that, in the general form, the function 
w has the form 

" 3 [ - To) + x-', (k), ~,(k) _ N (k) ~ + as(Tl - 770)]. w [aT(T L aim (IVlm lm,OJ 
k = l  

Therefore, the corresponding tensors of the chemical potentials, which characterize the energy of chemical 
bonds in crystals or its change after the component k is added, depend on the quantities .~(k) From the form 
of the free-energy function for an elastic body (1.5), we find 

OK OIz 1 2 OA g(k) = Ofo 3 a ~  g e i , -  w eii + enjenj ~ + "~ eii ~ , ( k )  lm ,.q ~,7(k) ~ " 

For simplicity, we assume that the mechanical characteristics A, #, and K are certain mean quantities 
for the crystal and do not depend explicitly on the concentrations of the kth components. This approximation 
is suitable for describing the kinetics of the phase transition, but require clarification to model the mechanical 
behavior of crystals. Generally speaking, the quantities A and/z are also determined by the energy of chemical 
bonds in the crystal; therefore, to construct a more complete model, concrete dependences between the 
parameters a (k), A,/z, etc., can be needed; this can become the object of a separate study. Here we confine lra 

ourselves to a simple approximation for the components of the tensors of chemical potentials g(k) ----- g(k) _ l m  lrn,O 

3go~km)p-leii (k = 1,2, . . .  ,n). On a per-mole basis, we have g(k)lm = g(k)/m,0 -- 3Kalm(k)mkp-lr = g(k)(T, eiJ) " t i n  
With allowance for the link between the first invariants of the stress and strain tensors, we find 

g(a) ,(k) 3 g a l ~ m k p - l [ q i i  + 3Kw] -- ,~(k)(,~ (3.1) lrn "~" Y / m , 0  - -  .~lrn ~J" ' O'iJ)" 
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As before, the condition of thermodynamic equilibrium between the phases is dg = O. Similarly to the 
aforesaid (see Sec. 2), we find the following partial derivatives of the components of the tensors of" chemical 
potentials of the phases relative to the temperature and the stress-tensor components: 

s (k) (0glm,(k) Ak) 3mo-la.,Ka(k). (3.2) 

(k) 

_(k) = m - - ' a  (3.3) Elm ~ ~, ~ i j  ,] T -- p lm Oij . 

By analogy with chemical scalar potentials, we have 

OA k ) 
g(k) g(k) § RTln[N~k)], s(k) = _ (  yzm,o~ lm,O ~ lrn,st lrn,O \ ~ ] o . i j ~ O "  

Therefore, in the model considered, the partial molar entropy of the kth phase (3.2) is a tensor quantity 
and is determined by the form of the concentration tensors and the coefficients of concentration expansion. 
In the general case, the strain that arises as a result of phase transitions is the tensor of the fourth order with 
components (3.3). It follows from the condition of thermodynamic phase equilibrium that 

dTph'dp ---- 3mp-1 (/~o~ii + ~ AOqrn) / (Z~s i i  § ~ ASlrn) . (3.4) 
l,m l,m 
l#m l#m 

It is logical to identify the tensor analog of the heat of phase transition (~ph ---- (sl - &2)Tph with the 

energies of chemical bonds per mole. The type of the tensors (~ph and sk is determined by the symmetry of 
the crystal lattices of the phases. The heat of phase transition, which is determined in the experiment, is the 
quantity 

l,rn I,m l,m 

Thus, Qph depends on the type of crystal lattice and the energies of atomic bonds in the lattice, to be more 
precise, on their difference in different phases of the crystal. 

The change of the molar volume in this phase transition is 3rnp-lAaii ---- (/kV)p h. It is natural that 
if the molar volume during the phase transition does not vary, the expression (3.4) relates the change in the 
temperature of the phase transition as the pressure varies to the variation in the crystal shape (or the type 
of crystal lattice). 

Therefore, if the phase transition occurs at constant temperature but at different pressures in the 
phases, then 

(OqPl"~ (2) 

l,m /,m 
We note once again that  all the thermodynamic potentials in the proposed model of the medium are scalars, 
and all the parameter s of the medium have the same physical meaning as in the simpler models. In studying 
the phase transitions of complex compounds, one needs, apparently, to introduce the concentration tensors 
and the coefficients of concentration expansion that characterize the types of sublattice formed by atoms of 
each sort. 
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